cdshealpix-rust
CDS implementation of the HEALPix tesselation in Rust and modules to generate libraries in WebAssembly, Python, ...
This library is an implementation in Rust of the HEALPix tesselation. This implementation has been made by the Strasbourg astronomical Data Centre (Centre de Données astronomique de Strasbourg, CDS).
Initially, it is a port of a part of the CDS Java library available here, but improvement have been added while porting the code.
For informations on HEALPix in general, see: * The official web site * The Wikipedia page * The two main reference papers: Gorski (2005) and Calabretta (2007)
Official implementations, are available here. It contains GPL v2 codes in Fortran, C++, Java, IDL, Python, ...
Other independant HEALPix implementations: * Astropy-healpix python wrapper using a C code (C code by Dustin Lang, python wrapper by Thomas Robitaille and others) * Javascript/Typescript implementation by Koike Michitaro * Julia implementation by Maurizio Tomasi * C "official" core functionalities implementation in BSD by Martin Reinecke * ... (Help me to add links to other HEALPix resources and codes).
For best performances on your specific hardware, you can compile using:
bash
RUSTFLAGS='-C target-cpu=native' cargo build --release
This uses BMI2 instructions PDEP and PEXT, if supported by your processor, for bit interleaving.
However, the implementaion of those instructions on AMD Ryzen processors are extremely slow (20x slower than a lookup table,
doubling the hash
computation time)!
You can test it usingi:
bash
RUSTFLAGS='-C target-cpu=native' cargo bench
If the result of ZOrderCurve/BMI
is slower thatn ZOrderCurve/LUPT
, compile without the native
support:
bash
cargo build --release
rust
rustup target install i686-unknown-linux-gnu
sudo apt-get install gcc-multilib
RUSTFLAGS='-C target-cpu=native' cargo build --target=i686-unknown-linux-gnu --release
cone
and elliptical cone
coverage plus exact polygon
coverage queriesBMOC
(MOC with a flag telling if a cell is fully or partially covered by a surface) as a result of cone
, polygon
ot elliptical cone
coverage queriesBMOCs
and BMOC
creation from a list of cell number at a given depthcustom
approx methods, one can handle the rate of false positives) Compute the cell number of a given position on the unit-sphere at a given HEALPix depth.
```rust use cdshealpix::{nside}; use cdshealpix::nested::{getorcreate, Layer};
let depth = 12u8; let lon = 12.5f64.toradians(); let lat = 89.99999f64.to_radians();
let nestedd12 = getorcreate(depth); let nside = nside(depth) as u64; let expectedcellnumber = nside * nside - 1
asserteq!(expectedcellnumber, nestedd12.hash(lon, lat)); ```
Get the spherical coorinates of the 4 vertices of a given cell at a given depth:
```rust use cdshealpix::nested::{getorcreate, Layer};
let depth = 12u8; let cellnumber= 10_u64;
let nestedd12 = getor_create(depth);
let [ (lonsouth, latsouth), (loneast, lateast), (lonnorth, latnorth), (lonwest, latwest) ] = nestedd12.vertices(cellnumber);
```
Get a hierarchical view (a MOC) on the cells overlapped by a given cone:
```rust use cdshealpix::nested::{getorcreate, Layer};
let depth = 6u8; let nestedd6 = getorcreate(depth);
let lon = 13.158329f64.toradians(); let lat = -72.80028f64.toradians(); let radius = 5.64323f64.toradians();
let moc = nestedd6.coneoverlapapprox(lon, lat, radius); for cell in moc.intoiter() { println!("cell: {:?}", cell); } ```
(Not on crates.io, but on github)
The code source of the very beginning of a standalone exec can be found in cli/src/bin.rs
.
(Not on crates.io, but on github)
To build and use the WebAssembly (and Javascript) files, the libwasmbingen
directory.
We rely on wasm-bingen.
(Not on crates.io, but on github)
See the libpython
directory containing a very first integration in python using CFFI.
For a clean Python wrapper and associated Wheels, see Matthieu Baumann's project cds-healpix-python.
To use the library in python, install it through pip
(examples are provided on github cds-healpix-python):
bash
pip install cdshealpix
Like most projects in Rust, this project is licensed under either of
at your option.
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
It a first code in Rust, feel free to give some advice/feedback.