Dylint

A tool for running Rust lints from dynamic libraries

sh cargo install cargo-dylint dylint-link

Dylint is a Rust linting tool, similar to Clippy. But whereas Clippy runs a predetermined, static set of lints, Dylint runs lints from user-specified, dynamic libraries. Thus, Dylint allows developers to maintain their own personal lint collections.

Contents

Quick start

Running Dylint

The next three steps install Dylint and run all of this repository's [example lints] on a workspace:

  1. Install cargo-dylint and dylint-link:

    sh cargo install cargo-dylint dylint-link

  2. Add the following to the workspace's Cargo.toml file:

    toml [workspace.metadata.dylint] libraries = [ { git = "https://github.com/trailofbits/dylint", pattern = "examples/*/*" }, ]

  3. Run cargo-dylint: sh cargo dylint --all --workspace

In the above example, the libraries are found via [workspace metadata] (see below).

Writing lints

You can start writing your own Dylint library by running cargo dylint new new_lint_name. Doing so will produce a loadable library right out of the box. You can verify this as follows:

sh cargo dylint new new_lint_name cd new_lint_name cargo build DYLINT_LIBRARY_PATH=$PWD/target/debug cargo dylint list --lib new_lint_name

All you have to do is implement the [LateLintPass] trait and accommodate the symbols asking to be filled in.

Helpful [resources] for writing lints appear below.

How libraries are found

Dylint tries to run all lints in all libraries named on the command line. Dylint resolves names to libraries in the following three ways:

  1. Via the DYLINT_LIBRARY_PATH environment variable. If DYLINT_LIBRARY_PATH is set when Dylint is started, Dylint treats it as a colon-separated list of paths, and searches each path for files with names of the form DLL_PREFIX LIBRARY_NAME '@' TOOLCHAIN DLL_SUFFIX (see [Library requirements] below). For each such file found, LIBRARY_NAME resolves to that file.

  2. Via workspace metadata. If Dylint is started in a workspace, Dylint checks the workspace's Cargo.toml file for workspace.metadata.dylint.libraries (see [Workspace metadata] below). Dylint downloads and builds each listed entry, similar to how Cargo downloads and builds a dependency. The resulting target/release directories are searched and names are resolved in the manner described in 1 above.

  3. By path. If a name does not resolve to a library via 1 or 2, it is treated as a path.

It is considered an error if a name used on the command line resolves to multiple libraries.

If --lib name is used, then name is is treated only as a library name, and not as a path.

If --path name is used, then name is is treated only as a path, and not as a library name.

If --all is used, Dylint runs all lints in all libraries discovered via 1 and 2 above.

Note: Earlier versions of Dylint searched the current package's target/debug and target/release directories for libraries. This feature has been removed.

Workspace metadata

A workspace can name the libraries it should be linted with in its Cargo.toml file. Specifically, a workspace's manifest can contain a TOML list under workspace.metadata.dylint.libraries. Each list entry must have the form of a Cargo git or path dependency, with the following differences:

Dylint downloads and builds each entry, similar to how Cargo downloads and builds a dependency. The resulting target/release directories are searched for files with names of the form that Dylint recognizes (see [Library requirements] below).

As an example, if you include the following in your workspace's Cargo.toml file and run cargo dylint --all --workspace, Dylint will run on your workspace all of this repository's [example general lints], as well as the example restriction lint [try_io_result].

toml [workspace.metadata.dylint] libraries = [ { git = "https://github.com/trailofbits/dylint", pattern = "examples/general/*" }, { git = "https://github.com/trailofbits/dylint", pattern = "examples/restriction/try_io_result" }, ]

Configurable libraries

Libraries can be configured by including a dylint.toml file in a linted workspace's root directory. The file should encode a [toml table] whose keys are library names. A library determines how its value in the table (if any) is interpreted.

As an example, a dylint.toml file with the following contents sets the [non_local_effect_before_error_return] library's work_limit configuration to 1_000_000:

toml [non_local_effect_before_error_return] work_limit = 1_000_000

For instructions on creating a configurable library, see the [dylint_linting] documentation.

Conditional compilation

For each library that Dylint uses to check a crate, Dylint passes the following to the Rust compiler:

sh --cfg=dylint_lib="LIBRARY_NAME"

You can use this feature to allow a lint when Dylint is used, but also avoid an "unknown lint" warning when Dylint is not used. Specifically, you can do the following:

```rust

[cfgattr(dylintlib = "LIBRARYNAME", allow(LINTNAME))]

```

Note that LIBRARY_NAME and LINT_NAME may be the same. For an example involving [non_thread_safe_call_in_test], see [dylint/src/lib.rs] in this repository.

Also note that the just described approach does not work for pre-expansion lints. The only known workaround for pre-expansion lints is allow the compiler's built-in [unknown_lints] lint. Specifically, you can do the following:

```rust

[allow(unknown_lints)]

[allow(PREEXPANSIONLINT_NAME)]

```

For an example involving [env_cargo_path], see [internal/src/examples.rs] in this repository.

Library requirements

A Dylint library must satisfy four requirements. Note: Before trying to satisfy these explicitly, see [Utilities] below.

  1. Have a filename of the form:

    DLL_PREFIX LIBRARY_NAME '@' TOOLCHAIN DLL_SUFFIX

    The following is a concrete example on Linux:

    libquestion_mark_in_expression@nightly-2021-04-08-x86_64-unknown-linux-gnu.so

    The filename components are as follows:

  2. Export a dylint_version function:

    rust extern "C" fn dylint_version() -> *mut std::os::raw::c_char

    This function should return 0.1.0. This may change in future versions of Dylint.

  3. Export a register_lints function:

    rust fn register_lints(sess: &rustc_session::Session, lint_store: &mut rustc_lint::LintStore)

    This is a function called by the Rust compiler. It is documented [here].

  4. Link against the rustc_driver dynamic library. This ensures the library uses Dylint's copies of the Rust compiler crates. This requirement can be satisfied by including the following declaration in your library's lib.rs file: rust extern crate rustc_driver;

Dylint provides [utilities] to help meet the above requirements. If your library uses the [dylint-link] tool and the [dylint_library!] macro, then all you should have to do is implement the [register_lints] function.

Utilities

The following utilities can be helpful for writing Dylint libraries:

VS Code integration

Dylint results can be viewed in VS Code using [rust-analyzer]. To do so, add the following to your VS Code settings.json file:

json "rust-analyzer.checkOnSave.overrideCommand": [ "cargo", "dylint", "--all", "--workspace", "--", "--all-targets", "--message-format=json" ]

If you want to use rust-analyzer inside a lint library, you need to add the following to your VS Code settings.json file:

json "rust-analyzer.rustcSource": "discover",

And add the following to the library's Cargo.toml file:

toml [package.metadata.rust-analyzer] rustc_private = true

Limitations

To run a library's lints on a package, Dylint tries to build the package with the same toolchain used to build the library. So if a package requires a specific toolchain to build, Dylint may not be able to apply certain libraries to that package.

One way this problem can manifest itself is if you try to run one library's lints on the source code of another library. That is, if two libraries use different toolchains, they may not be applicable to each other.

Resources

Helpful resources for writing lints include the following: