canonical-form

Algorithm to reduce combinatorial structures modulo isomorphism.

This can typically be used to to test if two graphs are isomorphic.

The algorithm manipulates its input as a black box by the action of permutations and by testing equallity with element of its orbit, plus some user-defined functions that help to break symmetries.

```rust use canonical_form::Canonize;

// Simple Graph implementation as adjacency lists

[derive(Ord, PartialOrd, PartialEq, Eq, Clone, Debug)]

struct Graph { adj: Vec>, }

impl Graph { fn new(n: usize, edges: &[(usize, usize)]) -> Self { let mut adj = vec![Vec::new(); n]; for &(u, v) in edges { adj[u].push(v); adj[v].push(u); } for list in &mut adj { list.sort() // Necessary to make the derived == correct } Graph { adj } } }

// The Canonize trait allows to use the canonial form algorithms impl Canonize for Graph { fn size(&self) -> usize { self.adj.len() } fn applymorphism(&self, perm: &[usize]) -> Self { let mut adj = vec![Vec::new(); self.size()]; for (i, nbrs) in self.adj.iter().enumerate() { adj[perm[i]] = nbrs.iter().map(|&u| perm[u]).collect(); adj[perm[i]].sort(); } Graph { adj } } fn invariantneighborhood(&self, u: usize) -> Vec> { vec![self.adj[u].clone()] } }

// Usage of library functions // Two isomorphic graphs let c5 = Graph::new(5, &[(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]); let otherc5 = Graph::new(5, &[(0, 2), (2, 1), (1, 4), (4, 3), (3, 0)]); asserteq!(c5.canonical(), other_c5.canonical());

// Non-isomorphic graphs let p5 = Graph::new(5, &[(0, 1), (1, 2), (2, 3), (3, 4)]); assert!(c5.canonical() != p5.canonical());

// Recovering the permutation that gives the canonical form let p = c5.morphismtocanonical(); asserteq!(c5.applymorphism(&p), c5.canonical());

// Enumerating automorphisms assert_eq!(c5.canonical().automorphisms().count(), 10) ```

License: MIT