```rust
extern crate cambridge_asm;
// Import Core
instruction set
use cambridge_asm::parse::Core;
// Custom instruction inst! { ext (ctx) { // I/O accessed with ctx.io // Output is ctx.io.write // Use with write! or writeln! macros writeln!(ctx.io.write, "This is a custom instruction").unwrap();
// Set r0 to detect custom instruction call
ctx.gprs[0] = 20;
}
}
// Extend Core
instruction set
extend! {
Ext extends Core {
EXT => ext,
}
}
```
``rust
// Import
Core` instruction set
use cambridge_asm::parse::Core;
// Imports of essential types use cambridge_asm::{ exec::{Context, ExecFunc, PasmResult}, inst::{InstSet, Op}, };
pub fn ext(ctx: &mut Context, _: &Op) -> PasmResult { // I/O accessed with ctx.io // Output is ctx.io.write // Use with write! or writeln! macros writeln!(ctx.io.write, "This is a custom instruction").unwrap();
// Set r0 to detect custom instruction call
ctx.gprs[0] = 20;
// Return Ok
Ok(())
}
enum Ext { EXT, Parent(Core), }
impl std::str::FromStr for Ext { type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s.to_uppercase().as_str() {
"EXT" => Ok(Self::EXT),
s => Ok(Self::Parent(s.parse::<Core>()?)),
}
}
}
impl std::fmt::Display for Ext { fn fmt(&self, f: &mut std::fmt::Formatter<'>) -> std::fmt::Result { match self { Self::EXT => f.writestr("EXT"), Self::Parent(p) => write!(f, "{}", p), } } }
impl InstSet for Ext { fn asfuncptr(&self) -> ExecFunc { match self { Self::EXT => ext, Self::Parent(p) => p.asfuncptr(), } }
fn from_func_ptr(f: ExecFunc) -> Result<Self, String> {
const EXT: ExecFunc = ext;
match f {
EXT => Ok(Self::EXT),
f => Ok(Self::Parent(Core::from_func_ptr(f)?)),
}
}
} ```
```rust fn main() { use cambridge_asm::{exec::Io, parse::jit};
const PROG: &str = r#"EXT
END
NONE: "#; let out = TestStdout::new(vec![]);
let mut e = jit::<Ext, _>(PROG, Io::default());
e.exec::<Ext>();
// Check if r0 == 20
assert_eq!(e.ctx.gprs[0], 20);
} ```
Refer to src/parse.rs to see how the Extended
instruction set is made using the macro
```rust
extern crate cambridge_asm;
inst! { h (ctx) { write!(ctx.io.write, "H").unwrap(); } }
inst! { e (ctx) { write!(ctx.io.write, "E").unwrap(); } }
inst! { l (ctx) { write!(ctx.io.write, "L").unwrap(); } }
inst! { o (ctx) { write!(ctx.io.write, "O").unwrap(); } }
// Define a new instruction set instset! { Custom { H => h, E => e, L => l, O => o, END => cambridgeasm::exec::io::end, } }
// Using it fn main() { use cambridge_asm::{exec::Io, parse::jit};
// Outputs "HELLO"
const PROG: &str = r#"H
E L L O END
NONE: "#;
let out = TestStdout::new(vec![]);
let mut e = jit::<Custom, _>(PROG, Io::default());
e.exec::<Custom>();
} ```