burn-import
facilitates the seamless import of machine learning models, particularly those in the
ONNX format, into the Burn deep learning framework. It automatically generates Rust source code,
aligns the model structure with Burn's native format, and converts tensor data for Burn
compatibility.
Note: This crate is in active development and currently supports a limited set of ONNX operators.
For practical examples, please refer to:
Follow these steps to import an ONNX model into your Burn project:
Update build.rs
: Include the following Rust code in your build.rs
file:
```rust use burn_import::onnx::ModelGen;
fn main() { // Generate Rust code from the ONNX model file ModelGen::new() .input("src/model/mnist.onnx") .outdir("model/") .runfrom_script(); } ```
Modify mod.rs
: Add this code to the mod.rs
file located in src/model
:
rust
pub mod mnist {
include!(concat!(env!("OUT_DIR"), "/model/mnist.rs"));
}
Utilize Imported Model: Use the following sample code to incorporate the imported model into your application:
```rust mod model;
use burn::tensor; use burn_ndarray::NdArrayBackend; use model::mnist::Model;
fn main() {
// Initialize a new model instance
let model: Model
// Create a sample input tensor (zeros for demonstration)
let input = tensor::Tensor::
// Execute the model let output = model.forward(input);
// Display the output println!("{:?}", output); } ```
Interested in contributing to burn-import
? Check out our development guide for
more information.