An implementation of the BLAKE2b hash with:
blake2-avx2
]. This implementation is very
fast. See the Performance section below.b2sum
command line utility, provided as a sub-crate. b2sum
includes command line flags for all the BLAKE2 associated data features.no_std
support. The std
Cargo feature is on by default, for CPU feature detection and
for implementing std::io::Write
.b2sum --blake2bp
.many::hash_many
] and
[many::update_many
]. These interfaces match the efficiency of BLAKE2bp but produce BLAKE2b
hashes. They're a building block for the [Bao project].```rust use blake2b_simd::{blake2b, Params};
let expected = "ca002330e69d3e6b84a46a56a6533fd79d51d97a3bb7cad6c2ff43b354185d6d\ c1e723fb3db4ae0737e120378424c714bb982d9dc5bbd7a0ab318240ddd18f8d"; let hash = blake2b(b"foo"); asserteq!(expected, &hash.tohex());
let hash = Params::new() .hashlength(16) .key(b"The Magic Words are Squeamish Ossifrage") .personal(b"L. P. Waterhouse") .tostate() .update(b"foo") .update(b"bar") .update(b"baz") .finalize(); asserteq!("ee8ff4e9be887297cf79348dc35dab56", &hash.tohex()); ```
An example using the included b2sum
command line utility:
bash
$ cd b2sum
$ cargo build --release
Finished release [optimized] target(s) in 0.04s
$ echo hi | ./target/release/b2sum --length 256
de9543b2ae1b2b87434a730727db17f5ac8b8c020b84a5cb8c5fbcc1423443ba -
To run small benchmarks yourself, first install OpenSSL and libsodium on your machine, then:
```sh cd benches/cargo_bench
cargo +nightly bench ```
The benches/bench_multiprocess
sub-crate runs various hash functions on
long inputs in memory and tries to average over many sources of
variability. Here are the results from my laptop for cargo run --release
:
table
╭─────────────────────────┬────────────╮
│ blake2b_simd many::hash │ 2.223 GB/s │
│ blake2b_simd BLAKE2bp │ 2.211 GB/s │
│ sneves BLAKE2bp │ 2.143 GB/s │
│ blake2b_simd BLAKE2b │ 1.008 GB/s │
│ OpenSSL SHA-1 │ 0.971 GB/s │
│ sneves BLAKE2b │ 0.949 GB/s │
│ libsodium BLAKE2b │ 0.940 GB/s │
│ blake2b_simd portable │ 0.812 GB/s │
│ OpenSSL SHA-512 │ 0.666 GB/s │
╰─────────────────────────┴────────────╯
The benches/bench_b2sum.py
script benchmarks b2sum
against several
Coreutils hashes, on a 1 GB file of random data. Here are the results from
my laptop:
table
╭───────────────────────────────┬────────────╮
│ blake2b_simd b2sum --blake2bp │ 1.517 GB/s │
│ blake2b_simd b2sum │ 0.820 GB/s │
│ coreutils sha1sum │ 0.805 GB/s │
│ coreutils b2sum │ 0.668 GB/s │
│ coreutils md5sum │ 0.595 GB/s │
│ coreutils sha512sum │ 0.593 GB/s │
╰───────────────────────────────┴────────────╯