Bitfield Struct

Crate API

Procedural macro for declarative defining bitfields similar to structs. As this library provides a procedural macro, it has no runtime dependencies and works for no-std.

Usage

Add this to your Cargo.toml:

toml [dependencies] bitfield-struct = "0.5"

Basics

Let's begin with a simple example. Suppose we want to store multiple data inside a single Byte, as shown below:

7 6 5 4 3 3 1 0
P Level S Kind

This crate generates a nice wrapper type that makes it easy to do this:

```rust /// Define your type like this with the bitfield attribute

[bitfield(u8)]

struct MyByte { /// The first field occupies the least significant bits #[bits(4)] kind: usize, /// Booleans are 1 bit large system: bool, /// The bits attribute specifies the bit size of this field #[bits(2)] level: usize, /// The last field spans over the most significant bits present: bool } // The macro creates three accessor functions for each field: // , with and set let mybyte = MyByte::new() .withkind(15) .withsystem(false) .withlevel(3) .with_present(true);

assert!(my_byte.present()); ```

Features

Additionally, this crate has a few useful features, which are shown here in more detail.

The example below shows how attributes are carried over and how signed integers, padding, and custom types are handled.

```rust /// A test bitfield with documentation

[bitfield(u64)]

[derive(PartialEq, Eq)] // <- Attributes after bitfield are carried over

struct MyBitfield { /// defaults to 16 bits for u16 int: u16, /// interpreted as 1 bit flag, with a custom default value #[bits(default = true)] flag: bool, /// custom bit size #[bits(1)] tiny: u8, /// sign extend for signed integers #[bits(13)] negative: i16, /// supports any type, with into_bits/from_bits (const) functions, /// if not configured otherwise with the into/from parameters of the bits attribute. /// /// the field is initialized with 0 (passed into from_bits) if not specified otherwise #[bits(16)] custom: CustomEnum, /// public field -> public accessor functions #[bits(12)] pub public: usize, /// padding #[bits(5)] __: u8, }

/// A custom enum

[derive(Debug, PartialEq, Eq)]

[repr(u64)]

enum CustomEnum { A = 0, B = 1, C = 2, } impl CustomEnum { // This has to be a const fn const fn intobits(self) -> u64 { self as _ } const fn frombits(value: u64) -> Self { match value { 0 => Self::A, 1 => Self::B, _ => Self::C, } } }

// Usage: let mut val = MyBitfield::new() .withint(3 << 15) .withtiny(1) .withnegative(-3) .withcustom(CustomEnum::B) .with_public(2);

println!("{val:?}"); let raw: u64 = val.into(); println!("{raw:b}");

asserteq!(val.int(), 3 << 15); asserteq!(val.flag(), true); asserteq!(val.negative(), -3); asserteq!(val.tiny(), 1); asserteq!(val.custom(), CustomEnum::B); asserteq!(val.public(), 2);

// const members asserteq!(MyBitfield::FLAGBITS, 1); asserteq!(MyBitfield::FLAGOFFSET, 16);

val.setnegative(1); asserteq!(val.negative(), 1); ```

The macro generates three accessor functions for each field. Each accessor also inherits the documentation of its field.

The signatures for int are:

```rust // generated struct struct MyBitfield(u64); impl MyBitfield { const fn new() -> Self { Self(0) }

const INT_BITS: usize = 16;
const INT_OFFSET: usize = 0;

const fn with_int(self, value: u16) -> Self { /* ... */ }
const fn int(&self) -> u16 { /* ... */ }
fn set_int(&mut self, value: u16) { /* ... */ }

// other field ...

} // generated trait implementations impl From for MyBitfield { /* ... / } impl From for u64 { / ... / } impl Debug for MyBitfield { / ... */ } ```

Hint: You can use the rust-analyzer "Expand macro recursively" action to view the generated code.

Bit Order

The optional order macro argument determines the layout of the bits, with the default being Lsb (least significant bit) first:

```rust

use bitfield_struct::bitfield;

[bitfield(u8, order = Lsb)]

struct MyLsbByte { /// The first field occupies the least significant bits #[bits(4)] kind: usize, system: bool, #[bits(2)] level: usize, present: bool }

let mybytelsb = MyLsbByte::new() .withkind(10) .withsystem(false) .withlevel(2) .withpresent(true);

// .- present // | .- level // | | .- system // | | | .- kind assert!(mybytelsb.0 == 0b1100_1010); ```

The macro generates the reverse order when Msb (most significant bit) is specified:

```rust

use bitfield_struct::bitfield;

[bitfield(u8, order = Msb)]

struct MyMsbByte { /// The first field occupies the most significant bits #[bits(4)] kind: usize, system: bool, #[bits(2)] level: usize, present: bool }

let mybytemsb = MyMsbByte::new() .withkind(10) .withsystem(false) .withlevel(2) .withpresent(true);

// .- kind // | .- system // | | .- level // | | | .- present assert!(mybytemsb.0 == 0b1010010_1); ```

fmt::Debug and Default

This macro automatically creates a suitable fmt::Debug and Default implementations similar to the ones created for normal structs by #[derive(Debug, Default)]. You can disable this with the extra debug and default arguments.

```rs

[bitfield(u64, debug = false, default = false)]

struct CustomDebug { data: u64 } impl fmt::Debug for CustomDebug { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "0x{:x}", self.data()) } } impl Default for CustomDebug { fn default() -> Self { Self(123) // note: you can also use #[bits(64, default = 123)] } }

let val = CustomDebug::default(); println!("{val:?}") ```