A Rust library for common preprocessing tasks performed in the data pipeline of the Murchison Widefield Array (MWA), located on the land of the Wajarri Yamatji people in Murchison Shire, Western Australia.
Birl reads MWA correlator visibilities in the gpufits file format using mwalib, which supports the existing "legacy" MWA correlator, as well as the in-development "MWAX" correlator.
Birli is the Wajarri word for lightning, a common cause of outages at the MWA, and a great descriptor for the speed which this library intends to deliver.
for OS-specific instructions, check out the linux CI Script; the Makefile.toml; and the Dockerfile as these are tested regularly. The instructions below may be updated less frequently, but are better documented.
```bash
sudo apt install -y gcc libssl-dev pkg-config curl unzip wget
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs -sSf | sh -s -- -y
cargo install --force cargo-make
export MAKEFLAGS="-j $MAKEFLAGS"
cargo make install_deps
export LDLIBRARYPATH="/usr/local/lib/:/usr/lib/x86_64-linux-gnu/" ```
Unfortunately most of the prerequisites aren't available on Windows. However, WSL is great, and there is a docker image! You could use VSCode remote for WSL or Docker. Your best best is Ubuntu LTS
Previously macOS was supported, however this has ben dropped due to issues with the aoflagger Homebrew tap. Any help here would be welcome.
bash
cargo --features=aoflagger install --path .
This creates a birli
binary with the aoflagger
feature enabled in $HOME/.cargo/bin
Having issues with Birli? run the test suite to narrow down your issue.
bash
cargo test
Experiencing segfaults? I can guarantee it's because of one of the C library dependencies. Make sure you have the right versions of all the libraries. These are specified in Prerequisites.
Get library versions on linux with:
bash
pkg-config --modversion cfitsio
pkg-config --modversion erfa
aoflagger --version
If you have something like CASA installed from apt, it's going to put an
ancient cfitsio library version in /usr/lib/x86_64-linux-gnu/
, to get around
this, you must export LD_LIBRARY_PATH=/usr/local/lib/
in the shell so that Birli can find the correct library version.
You can enable additional logging on individual Rust modules by setting the RUST_LOG
environment variable. For example:
bash
RUST_LOG=trace birli ... # set log level to trace for all module (including dependencies)
RUST_LOG=birli=debug birli ... # set log level to debug for birli only
RUST_LOG=birli::io=error birli ... # only show warnings for birli's io module
For more examples, see the env_logger docs
The default log level in info
Couldn't get it working on your environment? You can always run Birli in Docker
bash
docker run mwatelescope/birli:latest -h
Want to open a shell within a fully provisioned Birli development environment? Easy!
bash
docker run -it --entrypoint /bin/bash --volume $PWD:/app mwatelescope/birli:latest
Note: This mounts the current directory to /app
in the Docker image, meaning both of these systems share the same
target
folder. so if your host system is a different
architecture than Docker, you may need to cargo clean
each time you switch between these environments. You may also want to temporarily disable any linters or language servers that use
```bash
module load singularity
singularity pull --dir . docker://mwatelescope/birli:latest
singularity exec /pawsey/mwa/singularity/birli/birlilatest.sif /app/target/release/birli ${YOURBIRLI_ARGS} ```
see this gist for an example of a Garrawarla SLURM job using Birli
This will give you much more information about any problem you're having with Birli, however the debug build is not optimised, and is much slower.
```bash
salloc --partition workq --time 1:00:00 --nodes 1 -c 38 --mem=350G
module load singularity
singularity pull --dir . docker://mwatelescope/birli:debug
singularity exec /pawsey/mwa/singularity/birli/birli_debug.sif /bin/bash ```
then within this shell
```bash
export RUST_LOG=trace
gdb --args /app/target/debug/birli ${YOURBIRLIARGS}
```
birli -h
```txt
USAGE:
birli [OPTIONS] --metafits
OPTIONS:
--apply-di-cal
INPUT:
-m, --metafits
SELECTION:
--no-sel-autos [WIP] Deselect autocorrelations
--no-sel-flagged-ants [WIP] Deselect flagged antennas
--sel-ants
RESOURCE LIMITS:
--max-memory
FLAGGING:
--flag-antennas
CORRECTION:
--no-cable-delay Do not perform cable length corrections
--no-digital-gains Do not perform digital gains corrections
--no-geometric-delay Do not perform geometric corrections
--passband-gains
AVERAGING:
--avg-freq-factor
OUTPUT:
-f, --flag-template The template used to name flag files. Percents are substituted
for the zero-prefixed GPUBox ID, which can be up to 3
characters long. Example: FlagFile%%%.mwaf
-M, --ms-out
AOFLAGGER:
--aoflagger-strategy
Note: the aoflagged options are only available when the aoflagger feature is enabled.
Operations are performed in the order described by the following sections.
Cable delay correction involves adjusting visibility phases to correct for the differences in electrical length of the cable between each tile and it's receiver.
Legacy MWA correlator observations do not typically have cable delays applied, however MWAX observations can. The CABLEDEL
key in the metafits describes what geometric delays have been applied.
By default, Birli will apply cable length corrections. You can use --no-cable-delay
to disable this.
A baseline's cable lengths are determined by the difference between a baseline's rfInput electrical lengths, as specified the the TILEDATA
HDU of the metafits. Complex visibilities are phase-shifted by an angle determined by the electrical length, and the channel's frequency.
rust
let angle = -2.0 * PI * electrical_length_m * freq_hz / SPEED_OF_LIGHT_IN_VACUUM_M_PER_S;
Each input in the raw data is scaled by a factor for each coarse channel. This is defined in the metafits primary hdu in the Gains column. Birli corrects these digital gains by default, you can disable this with --no-digital-gains
Adjust each coarse channel within a fine channel to correct for the shape of the pfb passband curve. Birli will apply the gains defined in the mwa wiki on pfb gains by default. They can be disabled with --passband-gains none
. Another option is to emulate Cotter's _sb128ChannelSubbandValue2014FromMemo
from subbandpassband.cpp
, sometimes referred to as Levine Gains. Since these gains were computed at the base legacy correlator resolution of 10KHz, they will not work on all MWAX resolutions. Cotter's implementation of this functionality is slightly different, in that it does not include the channel from the gains when scaling. It's not clear if this is a bug or a feature.
When applying pfb gains to an observation that is not at the same resolution as the gains, the gains need to be averaged to fit the data, and the exact details of this averaging depends on the correlator type. For more dtails, see the mwa wiki on averaging fine channels
By default, Birli will flag the data using the default MWA strategy in AOFlagger. You can use the
--no-rfi
option to disable this, or the --aoflagger-strategy
option to proived your own strategy
file.
Geometric correction involves adjusting visibility phases to correct for the differences in distance that light from the phase center has to travel to reach each tile.
Legacy MWA correlator observations are not typically phase tracked, however MWAX observations can have phase tracking applied. The GEODEL
card in the metafits describes what geometric delays have been applied.
By default, Birli will apply geometric corrections at the phase center if they have not already been applied. It determines the observations phase center from the RAPHASE
and DECPHASE
cards in the metafits. If these are not available, the pointing center cards (RA
and DEC
) from the metafits are used. You can use --no-geometric-delay
to disable geometric corrections, as well as the --phase-centre
and --pointing-centre
options to override the phase center.
A baseline's geometric length is determined by the w component of it's UVW fourier-space vector, after applying precession and nutation to it's tiles' positions and the phase center to the J2000 epoch, accounting for stellar aberration. Complex visibilities are phase-shifted by an angle determined by the w-component, and the channel's frequency.
rust
let angle = -2.0 * PI * uvw.w * freq_hz / SPEED_OF_LIGHT_IN_VACUUM_M_PER_S;
Birli can apply direction independent calibration solutions using the --apply-di-cal
flag. Solutions are applied before averaging. The number of channels in the un-averaged visibilities must be an integer multiple of the number of channels in the calibration solutions file. Unlike Cotter, Birli will handle calibration solutions where a NaN
value is present by flagging any visibilities where a NaN is present.
Currently, only the MWA aocal format (.bin), historically generated by the calibrate
binary in the mwa-reduce
package is supported. This format is described here, however due to the ambiguous definition of the startTime and endTime fields, their values are ignored and so only a single timeblock of solutions can be applied.
The --emulate-cotter
flag ensures that outputs match Cotter as much as possible. You should only use this flag if you need to perform a direct comparison with Cotter.
By default, Birli will use the MWA array position from MWALib in order to calculate UVWs and geometric corrections. This is more accurate than the one that Cotter uses, and is the main source of error when doing direct comparisons.
This flag is used as part of the tests in src/main.rs
to validate that Birli's output matches that of Cotter to within an acceptable margin.
To average the data in time or frequency by a given whole number factor, you can provide the --avg-time-factor
or --avg-freq-factor
options. This can also be achieved with the --avg-time-res
and
--avg-freq-res
options which take a duration [seconds] or ammount of bandwidth [kHz]
respectively. This second group of options will choose the closest whole number averaging factor
based on the resolution of the input data.
Birli can output visibility data to uvfits or measurement set with --ms-out
(-M
) or
--uvfits-out
(-u
). It can also output flags for each coarse channel in .mwaf format with
--flag-template
(-f
), where the %
characters in the template argument are replaced with
the same zero-prefixed coarse channel identifiers that are used to identify the coarse channel
GPUBox files that the coarse channel data came from. For legacy data, use two percentage characters,
since the coarse channel identifier is the GPUBox number. However, for MWAX data, the coarse channel
identifier is the channel number, which needs three digits.
Example: automatically determine flag template
bash
export flag_template='Flagfile%%.mwaf'
if [ ${obsid} -gt 1300000000 ]; then
flag_template='Flagfile_ch%%%.mwaf'
fi
birli \
-f $flag_template \
...
The following table shows how Birli options map onto Cotter options:
| Birli | Cotter | Cotter Description
| ----------------------------------- | ----------------------- | ------
| --version
| -version
| Output version and exit.
| -m <PATH>
| -m <filename>
| Read meta data from given fits filename.
| -f
,-u
,-M
| -o <filename>
| Save output to given filename
| --no-rfi
| -norfi
| Disable RFI detection.
| --aoflagger-strategy <PATH>
| -flag-strategy <file>
| Use the specified aoflagger strategy.
| --no-cable-delay
| -nocablelength
| Do not perform cable length corrections.
| --no-geom
| -nogeom
| Disable geometric corrections.
| --phase-centre <RA> <DEC>
| -centre <ra> <dec>
| Set alternative phase centre, e.g. -centre 00h00m00.0s 00d00m00.0s.
| --pointing-centre
| -usepcentre
| Centre on pointing centre.
| --avg-time-res <SECONDS>
| -timeres <s>
| Average nr of sec of timesteps together before writing to measurement set.
| --avg-freq-res <KHZ>
| -freqres <kHz>
| Average kHz bandwidth of channels together before writing to measurement set.
| --apply-di-cal <PATH>
| -full-apply <file>
| Apply a solution file before averaging.
| --no-digital-gains
| -nosbgains
| Do not correct for the digital gains.
| --max-memory
(WIP) | -absmem <gb>
| Use at most the given amount of memory, specified in gigabytes.
| --flag-edge-width <kHz>
| -edgewidth <kHz>
| Flag the given width of edge channels of each sub-band (default: 80 kHz).
| --flag-init <sec>
| -initflag <sec>
| Specify number of seconds to flag at beginning of observation (default: QUACK)
| --flag-end <sec>
| -endflag <sec>
| Specify number of seconds to flag extra at end of observation (default: 0s).
| --flag-dc
| -flagdcchannels
| Flag the centre channel of each sub-band (currently the default).
| --no-flag-dc
| -noflagdcchannels
| Do not flag the centre channel of each sub-band.
| --flag-antennae <ANTS>...
(WIP) | -flagantenna <lst>
| Mark the comma-separated list of zero-indexed antennae as flagged antennae.
| --flag-coarse-chans <CHANS>
(WIP) | -flagsubband <lst>
| Flag the comma-separated list of zero-indexed sub-bands.
| --no-sel-autos
(WIP) | -noautos
| Do not output auto-correlations.
| (not --flag-autos
) | -noflagautos
| Do not flag auto-correlations (default for uvfits file output).
| (default) | -nostats
| Disable collecting statistics (default for uvfits file output).
| (not --no-sel-flagged-ants
, WIP) | -noantennapruning
| Do not remove the flagged antennae.
| (default) | -allowmissing
| Do not abort when not all GPU box files are available (default is to abort).
Birli performs all the same default preprocessing steps as Cotter when no flags are provided. The exceptions are that we have not yet implemented flagging of auto-correlations, pruning of flagged antennas. This means that birli <in/out args>
is equivalent to:
bash
cotter \
-allowmissing \
-noantennapruning \
-noflagautos \
-nostats \
-flag-strategy <mwa default aoflagger strategy>
<in/out args>
There is no intention of replicating the following options Birli at this point, so please open an issue if these are important to you:
-sbcount
, -sbstart
): This can be done by simply changing which coarse channel files are given in the CLI arguments)-use-dysco
, -dysco-config
)-a
, -h
, -i
): This information is readily available from metafits.-offline-gpubox-format
-saveqs
, -histograms
, -skipwrite
, -nostats
)-noflagmissings
: If an HDU is missing, it should always be flagged.-apply
: only -full-apply
is supported.-noalign
: gpuboxes are always aligned.-j
): Birli uses crossbeam for concurrency which intelligency uses the compute resources available. Strict resource limits can be achieved with cgroups.-mem
): Only -absmem
is supported. Determining memory limits on HPC systems is unreliable, so we recommend manually specifying a memory limit instead.-sbpassband <file>
-flagfiles <name>
apply existing flagsIn this example, we use the aoflagger subcommand to:
-u
)bash
birli \
-m tests/data/1254670392_avg/1254670392.metafits \
-f "/tmp/Flagfile.Birli.MWA.%%.mwaf" \
-u "/tmp/1254670392.birli.uvfits" \
--avg-time-res 4 --avg-freq-res 160 \
tests/data/1254670392_avg/1254670392_*gpubox*.fits
The equivalent Cotter commands would be:
```bash
cotter \ -m tests/data/1254670392avg/1254670392.metafits \ -o "tests/data/1254670392avg/1254670392.cotter.uvfits" \ -allowmissing \ -noantennapruning \ -noflagautos \ -nostats \ -timeres 4 \ -freqres 160 \ -flag-strategy /usr/local/share/aoflagger/strategies/mwa-default.lua \ tests/data/1254670392avg/125467039220191009153257_gpubox*.fits ```
Pull requests are welcome! Please do your best to ensure that the high standards of test coverage are maintained.
Before each commit, use cargo make ci
to ensure your code is formatted correctly.
This scientific work uses data obtained from the Murchison Radio-astronomy Observatory. We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site.
This repo is approved by...