bevy_rl

bevy_rl is a tool for building Reinforcement Learning Gyms with Bevy game engine in Rust.

It lets you to build 3D AI environments to train your AI agents that learn from raw screen pixels.

Features

Usage

1. Define Action Space and Application State

```rust

[derive(Debug, Clone, Eq, PartialEq, Hash)]

enum AppState { InGame, // Actve state Control, // A paused state in which application waits for agent input Reset, // A request to reset environment state }

// List of possible agent actions (discrete variant) bitflags! { #[derive(Default)] pub struct PlayerActionFlags: u32 { const IDLE = 1 << 0; const FORWARD = 1 << 1; const BACKWARD = 1 << 2; const LEFT = 1 << 3; const RIGHT = 1 << 4; const TURNLEFT = 1 << 5; const TURNRIGHT = 1 << 6; const SHOOT = 1 << 7; } } ```

2. Enable AI Gym Plugin

```rust app // Plugin settings .insert_resource(AIGymSettings { \ viewport settings width: 768,
height: 768, })

// Actions
.insert_resource(Arc::new(Mutex::new(AIGymState::<PlayerActionFlags> { 
    ..Default::default()
})))

// Plugin
.add_plugin(AIGymPlugin::<PlayerActionFlags>::default());

```

3. Handling Agent Actions

rust struct DelayedControlTimer(Timer);

rust app.insert_resource(DelayedControlTimer(Timer::from_seconds(0.1, true))); // 10 Hz app.add_system_set( SystemSet::on_update(AppState::Control) // Game Systems .with_system(turnbased_text_control_system) // System that parses user command .with_system(execute_reset_request), // System that performs environment state reset );

4. Handling Agent Actions

```rust fn turnbasedtextcontrolsystem( aigymstate: ResMut>>>, mut appstate: ResMut>, ) {

// Acquire communication channels
let step_rx: Receiver<String>;
let result_tx: Sender<bool>;
{
    let ai_gym_state = ai_gym_state.lock().unwrap();
    step_rx = ai_gym_state.__step_channel_rx.clone(); // Receiver channel for agent actions
    result_tx = ai_gym_state.__result_channel_tx.clone(); // Sender channel 
}

// Return if no input provided from rest API
if step_rx.is_empty() {
    return;
}

let unparsed_action = step_rx.recv().unwrap();
if unparsed_action == "" {
    // Send negative signal to REST API if action wasn't successful
    result_tx.send(false).unwrap();
    return;
}

// Parse an action
let action = match unparsed_action.as_str() {
    // # PARSE ACTION STRING HERE
};

if action.is_none() {
    // Send negative signal to REST API if action wasn't successful
    result_tx.send(false).unwrap(); 
    return;
}

// Set reward and whether simulation is terminated
let score = 1;
ai_gym_state.rewards.push(score as f32);
ai_gym_state.is_terminated = false;

// # CONTROL AGENT IN ENVIRONMENT HERE

// Set environment to previous state
app_state.pop().unwrap();

} ```

5. Handling Environment Reset

```rust fn executeresetrequest( mut appstate: ResMut>, aigymstate: ResMut>>>, ) { let resetchannelrx: Receiver; { let aigymstate = aigymstate.lock().unwrap(); resetchannelrx = aigymstate.resetchannel_rx.clone(); }

if reset_channel_rx.is_empty() {
    return;
}

reset_channel_rx.recv().unwrap();
{
    let mut ai_gym_state = ai_gym_state.lock().unwrap();
    ai_gym_state.is_terminated = true;
}

// # RESET YOUR ENVIRONMENT HERE

} ```

6. Switching Environment to Control State

```rust fn turnbasedcontrolsystemswitch( mut appstate: ResMut>, time: Res

    let ai_gym_state = ai_gym_state.lock().unwrap();

    if ai_gym_state.__result_channel_rx.is_empty() {
        ai_gym_state.__result_channel_tx.send(true).unwrap();
    }
}

} ```

Interacting with Environment

First Person camera pixels

GET http://localhost:7878/screen.png

Reset Environment

POST http://localhost:7878/reset

Perform Action

POST http://localhost:7878/step body=ACTION

Example usage

BevyStein is first-person shooter environment made with bevy_rl.

Limitations

bevy_rl is early stage of development and has following limitations:

  1. Raw pixels are from GPU buffer and do not contain pixels from 2D camera
  2. You must be careful with sending signals to step and reset requests or application can deadlock