A Rust library for encoding and decoding bencode with enforced canonicalization rules. Bencode is a simple but very effective encoding scheme, originating with the BitTorrent peer-to-peer system.
This is not the first library to implement Bencode. In fact there's several implementations already:
- Toby Padilla [serde-bencode](https://github.com/toby/serde-bencode)
- Arjan Topolovec's [rust-bencode](https://github.com/arjantop/rust-bencode),
- Murarth's [bencode](https://github.com/murarth/bencode),
- and Jonas Hermsmeier's [rust-bencode](https://github.com/jhermsmeier/rust-bencode)
So why the extra work adding yet-another-version of a thing that already exists, you might ask?
Implementing a canonical encoding form is straight forward. It comes down to defining a proper way of handling unordered data. The next step is that bendy's sorting data before encoding it using the regular Bencode rules. If your data is already sorted bendy will of course skip the extra sorting step to gain efficiency. But bendy goes a step further to ensure correctness: If you hand the library data that you say is already sorted, bendy still does an in-place verification to ensure that your data actually is sorted and complains if it isn't. In the end, once bendy serialized your data, it's Bencode through and through. So it's perfectly compatible with every other Bencode library.
Just remember: At this point only bendy enforces the correctness of the canonical format if you read it back in.
Bendy ensures that any de-serialize / serialize roundtrip produces the exact same and correct binary representation. This is relevant if you're dealing with unordered sets or map-structured data where theoretically the order is not relevant, but in practice it is. Especially if you want to ensure that cryptographic signatures related to the data structure do not get invalidated accidentially.
| Datastructure | Default Impl | Comment |
|---------------|--------------|--------------------------------------------------------------------------------------------|
| Vec | ✔ | Defines own ordering |
| VecDeque | ✔ | Defines own ordering |
| LinkedList | ✔ | Defines own ordering |
| HashMap | ✔ | Ordering missing but content is ordered by key byte representation. |
| BTreeMap | ✔ | Defines own ordering |
| HashSet | ✘ | (Unordered) Set handling not yet defined |
| BTreeSet | ✘ | (Unordered) Set handling not yet defined |
| BinaryHeap | ✘ | Ordering missing |
| Iterator | ~ | emit_unchecked_list()
allows to emit any iterable but user needs to ensure the ordering. |
Attention:
Since most list types already define their inner ordering, datastructures
like Vec
, VecDeque
, and LinkedList
will not get sorted during encoding!
There is no default implementation for handling generic iterators.
This is by design. Bendy
cannot tell from an iterator whether the underlying
structure requires sorting or not and would have to take data as-is.
What?
The library allows to set an expected recursion depth limit for de- and encoding. If set, the parser will use this value as an upper limit for the validation of any nested data structure and abort with an error if an additional level of nesting is detected.
While the encoding limit itself is primarily there to increase the confidence of bendy users in their own validation code, the decoding limit should be used to avoid parsing of malformed or malicious external data.
MAX_DEPTH
field inside any implementation of the Encodable
trait.with_max_depth
on the Decoder
object.How?
The nesting level calculation always starts on level zero, is incremented by one when the parser enters a nested bencode element (i.e. list, dictionary) and decrement as soon as the related element ends. Therefore any values decoded as bencode strings or integers do not affect the nesting limit.
In most cases it should be enough to pass the object to encode into the emit
function of the encoder as this will serialize any type implementing the
Encodable
trait.
Next to emit
the encoder also provides a list of functions to encode specific
bencode primitives (i.e. emit_int
and emit_str
) and nested bencode elements
(i.e. emit_dict
and emit_list
). These methods should be used during the
implementation of the Encodable
trait or if its necessary to output a specific
non default data type.
Hint: As its a very common pattern to serialize a Vec<u8>
as a byte string
Bendy exposes the AsString
wrapper. This can be used to encapsulate any element
implementing AsRef<[u8]>
to output itself as a bencode string instead of a list.
For a usage example see the categorie Encode a byte string
.
```rust use bendy::encoder::Encoder;
let mut encoder = Encoder::new(); encoder.emit(1010011010).unwrap();
let output = encoder.getoutput().unwrap(); asserteq!("i1010011010e", std::str::from_utf8(&output).unwrap()); ```
```rust use bendy::encoder::Encoder;
let mut encoder = Encoder::new(); encoder.emit("foo").unwrap();
let output = encoder.getoutput().unwrap(); asserteq!("3:foo", std::str::from_utf8(&output).unwrap()); ```
```rust use bendy::encoder::{Encoder, AsString};
let byte_vector = vec![0u8, 1, 2];
let mut encoder = Encoder::new(); encoder.emit(AsString(byte_vector)).unwrap();
let output = encoder.getoutput().unwrap(); asserteq!("3:\x00\x01\x02", std::str::from_utf8(&output).unwrap()); ```
```rust use bendy::{ encoder::{Encodable, SingleItemEncoder, Encoder}, Error as BencodeError, };
struct Dict{ bar: String, }
impl Encodable for Dict{ const MAX_DEPTH: usize = 1;
fn encode(&self, encoder: SingleItemEncoder) -> Result<(), BencodeError> {
encoder.emit_dict(|mut e| {
e.emit_pair(b"bar", &self.bar)?;
Ok(())
})
}
}
fn main() { let dict = Dict { bar: "baz".to_owned() };
let mut encoder = Encoder::new();
encoder.emit(dict).unwrap();
let output = encoder.get_output().unwrap();
assert_eq!(
"d3:bar3:baze",
std::str::from_utf8(&output).unwrap()
);
} ```
```rust use bendy::encoder::{Encoder, List};
let list = vec!["foo", "bar", "baz"];
let mut encoder = Encoder::new(); encoder.emit(List(&list)).unwrap();
let output = encoder.getoutput().unwrap(); asserteq!( "l3:foo3:bar3:baze", std::str::from_utf8(&output).unwrap() ); ```
```rust use bendy::decoder::Decoder;
let mut decoder = Decoder::new(b"i1010011010e"); let object = decoder.next_object().unwrap().unwrap();
let number = object.integerstrorerr(-1).unwrap(); asserteq!("1010011010", number); ```
```rust use bendy::decoder::Decoder;
let mut decoder = Decoder::new(b"11:foo bar baz"); let object = decoder.next_object().unwrap().unwrap();
let bytes = object.bytesorerr(-1).unwrap(); asserteq!("foo bar baz", std::str::fromutf8(&bytes).unwrap()); ```
```rust use bendy::decoder::{Decoder, Object};
let mut decoder = Decoder::new(b"d3:foo3:bare"); let object = decoder.next_object().unwrap();
if let Some(Object::Dict(mut dict_decoder)) = object {
if let (b"foo",value) = dict_decoder.next_pair().unwrap().unwrap() {
let bytes = value.bytes_or_err(-1).unwrap();
assert_eq!("bar", std::str::from_utf8(&bytes).unwrap());
}
} ```
```rust use bendy::decoder::{Decoder, Object};
let mut decoder = Decoder::new(b"l3:foo3:bar3:baze"); let object = decoder.next_object().unwrap(); let mut result : Vec<&str> = vec![];
if let Some(Object::List(mut list_decoder)) = object {
while let Some(list_element) = list_decoder.next_object().unwrap(){
let bytes = list_element.bytes_or_err(-1).unwrap();
result.push(std::str::from_utf8(&bytes).unwrap());
}
}
assert_eq!(["foo", "bar", "baz"][..], result[..]); ```
The parser wouldn't require any unsafe code to work but it still contains a single unsafe call
to str::from_utf8_unchecked
. This call is used to avoid a duplicated UTF-8 check when the
parser converts the bytes representing an incoming integer into a &str
after its successful
validation.
Disclaimer: Further unsafe code may be introduced through the dependency on failure
and
failure-derive
.