Boring Data Tool (bdt) 🤓

Command-line tool for viewing, querying, converting, and comparing files in popular data formats (CSV, Parquet, JSON, and Avro).

Powered by Apache Arrow and DataFusion.

Features

Installation

Mac

shell brew tap andygrove/bdt brew install bdt

Other Platforms

Rust must be installed first. Follow instructions at https://rustup.rs/.

bash cargo install bdt

Usage

```bash Boring Data Tool

USAGE: bdt

FLAGS: -h, --help Prints help information -V, --version Prints version information

SUBCOMMANDS: compare Compare the contents of two files convert Convert a file to a different format count Show the row count of the file help Prints this message or the help of the given subcommand(s) query Run a SQL query against one or more files schema View schema of a file view View contents of a file view-parquet-meta View Parquet metadata ```

Examples

View File Schema

bash bdt schema /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet +-----------------------+-----------------------------+-------------+ | column_name | data_type | is_nullable | +-----------------------+-----------------------------+-------------+ | VendorID | Int64 | YES | | tpep_pickup_datetime | Timestamp(Nanosecond, None) | YES | | tpep_dropoff_datetime | Timestamp(Nanosecond, None) | YES | | passenger_count | Float64 | YES | | trip_distance | Float64 | YES | | RatecodeID | Float64 | YES | | store_and_fwd_flag | Utf8 | YES | | PULocationID | Int64 | YES | | DOLocationID | Int64 | YES | | payment_type | Int64 | YES | | fare_amount | Float64 | YES | | extra | Float64 | YES | | mta_tax | Float64 | YES | | tip_amount | Float64 | YES | | tolls_amount | Float64 | YES | | improvement_surcharge | Float64 | YES | | total_amount | Float64 | YES | | congestion_surcharge | Float64 | YES | | airport_fee | Float64 | YES | +-----------------------+-----------------------------+-------------+

View File Contents

bash $ bdt view /path/to/file.parquet --limit 10 +-----------+------------------+--------+--------+----------+----------+---------+---------+-------------+-------------+ | t_time_sk | t_time_id | t_time | t_hour | t_minute | t_second | t_am_pm | t_shift | t_sub_shift | t_meal_time | +-----------+------------------+--------+--------+----------+----------+---------+---------+-------------+-------------+ | 0 | AAAAAAAABAAAAAAA | 0 | 0 | 0 | 0 | AM | third | night | | | 1 | AAAAAAAACAAAAAAA | 1 | 0 | 0 | 1 | AM | third | night | | | 2 | AAAAAAAADAAAAAAA | 2 | 0 | 0 | 2 | AM | third | night | | | 3 | AAAAAAAAEAAAAAAA | 3 | 0 | 0 | 3 | AM | third | night | | | 4 | AAAAAAAAFAAAAAAA | 4 | 0 | 0 | 4 | AM | third | night | | | 5 | AAAAAAAAGAAAAAAA | 5 | 0 | 0 | 5 | AM | third | night | | | 6 | AAAAAAAAHAAAAAAA | 6 | 0 | 0 | 6 | AM | third | night | | | 7 | AAAAAAAAIAAAAAAA | 7 | 0 | 0 | 7 | AM | third | night | | | 8 | AAAAAAAAJAAAAAAA | 8 | 0 | 0 | 8 | AM | third | night | | | 9 | AAAAAAAAKAAAAAAA | 9 | 0 | 0 | 9 | AM | third | night | | +-----------+------------------+--------+--------+----------+----------+---------+---------+-------------+-------------+

Run SQL Query

Queries can be run against one or more tables. Table names are inferred from file names.

bash $ bdt query --table /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet \ --sql "SELECT COUNT(*) FROM yellow_tripdata_2022_01" Registering table 'yellow_tripdata_2022_01' for /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet +-----------------+ | COUNT(UInt8(1)) | +-----------------+ | 2463931 | +-----------------+

Use the --tables option to register all files/directories in one directory as tables, and use the --sql-file option to load a query from disk.

bash $ bdt query --tables /mnt/bigdata/tpch/sf10-parquet/ --sql-file /home/andy/git/sql-benchmarks/sqlbench-h/queries/sf=10/q1.sql` Registering table 'supplier' for /mnt/bigdata/tpch/sf10-parquet/supplier.parquet Registering table 'part' for /mnt/bigdata/tpch/sf10-parquet/part.parquet Registering table 'partsupp' for /mnt/bigdata/tpch/sf10-parquet/partsupp.parquet Registering table 'nation' for /mnt/bigdata/tpch/sf10-parquet/nation.parquet Registering table 'region' for /mnt/bigdata/tpch/sf10-parquet/region.parquet Registering table 'orders' for /mnt/bigdata/tpch/sf10-parquet/orders.parquet Registering table 'lineitem' for /mnt/bigdata/tpch/sf10-parquet/lineitem.parquet Registering table 'customer' for /mnt/bigdata/tpch/sf10-parquet/customer.parquet +--------------+--------------+--------------+------------------+--------------------+----------------------+-----------+--------------+----------+-------------+ | l_returnflag | l_linestatus | sum_qty | sum_base_price | sum_disc_price | sum_charge | avg_qty | avg_price | avg_disc | count_order | +--------------+--------------+--------------+------------------+--------------------+----------------------+-----------+--------------+----------+-------------+ | A | F | 377518277.00 | 566065563002.85 | 537758943278.1740 | 559276505545.688411 | 25.500977 | 38237.155374 | 0.050006 | 14804071 | | N | F | 9851614.00 | 14767438399.17 | 14028805792.2114 | 14590490998.366737 | 25.522448 | 38257.810660 | 0.049973 | 385998 | | N | O | 730783087.00 | 1095795289143.27 | 1041001162690.9297 | 1082653834336.561576 | 25.497622 | 38233.198852 | 0.049999 | 28660832 | | R | F | 377732634.00 | 566430710070.73 | 538110604499.8196 | 559634448619.890015 | 25.508381 | 38251.211480 | 0.049996 | 14808177 | +--------------+--------------+--------------+------------------+--------------------+----------------------+-----------+--------------+----------+-------------+

Query results can also be written to disk by specifying an --output path.

bash $ bdt query --table /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet \ --sql "SELECT COUNT(*) FROM yellow_tripdata_2022_01" \ --output results.csv Registering table 'yellow_tripdata_2022_01' for /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet Writing results in CSV format to results.csv

Convert Parquet to newline-delimited JSON

bash $ bdt convert /path/to/input.parquet /path/to/output.json $ cat /path/to/output.json {"d_date_sk":2415022,"d_date_id":"AAAAAAAAOKJNECAA","d_date":"1900-01-02","d_month_seq":0,"d_week_seq":1,"d_quarter_seq":1,"d_year":1900,"d_dow":1,"d_moy":1,"d_dom":2,"d_qoy":1,"d_fy_year":1900,"d_fy_quarter_seq":1,"d_fy_week_seq":1,"d_day_name":"Monday","d_quarter_name":"1900Q1","d_holiday":"N","d_weekend":"N","d_following_holiday":"Y","d_first_dom":2415021,"d_last_dom":2415020,"d_same_day_ly":2414657,"d_same_day_lq":2414930,"d_current_day":"N","d_current_week":"N","d_current_month":"N","d_current_quarter":"N","d_current_year":"N"} {"d_date_sk":2415023,"d_date_id":"AAAAAAAAPKJNECAA","d_date":"1900-01-03","d_month_seq":0,"d_week_seq":1,"d_quarter_seq":1,"d_year":1900,"d_dow":2,"d_moy":1,"d_dom":3,"d_qoy":1,"d_fy_year":1900,"d_fy_quarter_seq":1,"d_fy_week_seq":1,"d_day_name":"Tuesday","d_quarter_name":"1900Q1","d_holiday":"N","d_weekend":"N","d_following_holiday":"N","d_first_dom":2415021,"d_last_dom":2415020,"d_same_day_ly":2414658,"d_same_day_lq":2414931,"d_current_day":"N","d_current_week":"N","d_current_month":"N","d_current_quarter":"N","d_current_year":"N"}

View Parquet File Metadata

```bash $ bdt --view-parquet-meta /mnt/bigdata/tpcds/sf100-parquet/store_sales.parquet/part-00000-cff04137-32a6-4e5b-811a-668f5d4b1802-c000.snappy.parquet

+------------+----------------------------------------------------------------------------+ | Key | Value | +------------+----------------------------------------------------------------------------+ | Version | 1 | | Created By | parquet-mr version 1.10.1 (build a89df8f9932b6ef6633d06069e50c9b7970bebd1) | | Rows | 40016 | | Row Groups | 1 | +------------+----------------------------------------------------------------------------+

Row Group 0 of 1 contains 40016 rows and has 190952 bytes:

+-----------------------+--------------+---------------+-----------------+-------+-----------------------------------------------------+------------------------------------+ | Column Name | Logical Type | Physical Type | Distinct Values | Nulls | Min | Max | +-----------------------+--------------+---------------+-----------------+-------+-----------------------------------------------------+------------------------------------+ | cddemosk | N/A | INT32 | N/A | 0 | 1520641 | 1560656 | | cdgender | N/A | BYTEARRAY | N/A | 0 | [70] | [77] | | cdmaritalstatus | N/A | BYTEARRAY | N/A | 0 | [68] | [87] | | cdeducationstatus | N/A | BYTEARRAY | N/A | 0 | [50, 32, 121, 114, 32, 68, 101, 103, 114, 101, 101] | [85, 110, 107, 110, 111, 119, 110] | | cdpurchaseestimate | N/A | INT32 | N/A | 0 | 500 | 10000 | | cdcreditrating | N/A | BYTEARRAY | N/A | 0 | [71, 111, 111, 100] | [85, 110, 107, 110, 111, 119, 110] | | cddepcount | N/A | INT32 | N/A | 0 | 0 | 6 | | cddepemployedcount | N/A | INT32 | N/A | 0 | 3 | 4 | | cddepcollege_count | N/A | INT32 | N/A | 0 | 5 | 5 | +-----------------------+--------------+---------------+-----------------+-------+-----------------------------------------------------+------------------------------------+ ```