Github CI Crates.io docs.rs

AutoML with SmartCore

AutoML is Automated Machine Learning, referring to processes and methods to make machine learning more accessible for a general audience. This crate builds on top of the smartcore machine learning framework, and provides some utilities to quickly train and compare models.

Usage

For instance, running the following: rust let mut classifier = automl::classification::Classifier::default(); classifier.with_dataset(smartcore::dataset::breast_cancer::load_dataset()); classifier.compare_models(); Will output this comparison of models usign cross-validation: text ┌────────────────────────────────┬───────────────────┬──────────────────┐ │ Model │ Training Accuracy │ Testing Accuracy │ ╞════════════════════════════════╪═══════════════════╪══════════════════╡ │ Random Forest Classifier │ 1.00 │ 0.96 │ ├────────────────────────────────┼───────────────────┼──────────────────┤ │ Logistic Regression Classifier │ 0.97 │ 0.95 │ ├────────────────────────────────┼───────────────────┼──────────────────┤ │ Gaussian Naive Bayes │ 0.95 │ 0.93 │ ├────────────────────────────────┼───────────────────┼──────────────────┤ │ KNN Classifier │ 0.96 │ 0.92 │ ├────────────────────────────────┼───────────────────┼──────────────────┤ │ Categorical Naive Bayes │ 0.96 │ 0.91 │ ├────────────────────────────────┼───────────────────┼──────────────────┤ │ Decision Tree Classifier │ 1.00 │ 0.90 │ ├────────────────────────────────┼───────────────────┼──────────────────┤ │ Support Vector Classifier │ 0.87 │ 0.85 │ └────────────────────────────────┴───────────────────┴──────────────────┘ You can then train a final model using classifier.train_final_model() and perform inference using that model with the predict method.

Features

Currently this crate only has AutoML features for regression and classification. This includes the following models: - Regression - Decision Tree Regression - KNN Regression - Random Forest Regression - Linear Regression - Ridge Regression - LASSO - Elastic Net - Support Vector Regression - Classification - Random Forest Classification - Decision Tree Classification - Support Vector Classification - Logistic Regression - KNN Classification