Github CI Crates.io docs.rs

AutoML with SmartCore

AutoML is Automated Machine Learning, referring to processes and methods to make machine learning more accessible for a general audience. This crate builds on top of the smartcore machine learning framework, and provides some utilities to quickly train and compare models.

Usage

For instance, running the following: rust let mut regressor = automl::regression::Regressor::default(); regressor.with_dataset(smartcore::dataset::diabetes::load_dataset()); regressor.compare_models(); print!("{}", regressor); Will output this: text ┌──────────────────────────┬──────────────┬─────────────┐ │ Model │ Training R^2 │ Testing R^2 │ ╞══════════════════════════╪══════════════╪═════════════╡ │ LASSO Regressor │ 0.52 │ 0.49 │ ├──────────────────────────┼──────────────┼─────────────┤ │ Linear Regressor │ 0.52 │ 0.48 │ ├──────────────────────────┼──────────────┼─────────────┤ │ Ridge Regressor │ 0.52 │ 0.47 │ ├──────────────────────────┼──────────────┼─────────────┤ │ Elastic Net Regressor │ 0.47 │ 0.45 │ ├──────────────────────────┼──────────────┼─────────────┤ │ Random Forest Regressor │ 0.90 │ 0.40 │ ├──────────────────────────┼──────────────┼─────────────┤ │ KNN Regressor │ 0.66 │ 0.29 │ ├──────────────────────────┼──────────────┼─────────────┤ │ Support Vector Regressor │ -0.01 │ -0.03 │ ├──────────────────────────┼──────────────┼─────────────┤ │ Decision Tree Regressor │ 1.00 │ -0.17 │ └──────────────────────────┴──────────────┴─────────────┘ Based on this output, you can then select the best model for the task.

Features

Currently this crate only has AutoML features for regression and classification. This includes the following models: - Regression - Decision Tree Regression - KNN Regression - Random Forest Regression - Linear Regression - Rdige Regression - LASSO - Elastic Net - Support Vector Regression - Classification - Random Forest Classification - Decision Tree Classification - Support Vector Classification - Logistic Regression - KNN Classification