Github CI Crates.io docs.rs

AutoML with SmartCore

AutoML is Automated Machine Learning, referring to processes and methods to make machine learning more accessible for a general audience. This crate builds on top of the smartcore machine learning framework, and provides some utilities to quickly train and compare models.

Usage

Running the following: For instance, running the following: rust fn main() { let data = smartcore::dataset::breast_cancer::load_dataset(); let settings = automl::regression::Settings::default(); let results = automl::regression::compare_models(data, settings); print!("{}", results); } Will output this: text ┌───────────────────────────┬────────┬───────────┬──────────┐ │ Model │ R^2 │ MSE │ MAE │ ╞═══════════════════════════╪════════╪═══════════╪══════════╡ │ Decision Tree Regression │ 1.000 │ 1.638e-12 │ 5.531e-8 │ ├───────────────────────────┼────────┼───────────┼──────────┤ │ Random Forest Regression │ 0.972 │ 6.626e-3 │ 2.830e-2 │ ├───────────────────────────┼────────┼───────────┼──────────┤ │ KNN Regression │ 0.878 │ 2.851e-2 │ 5.624e-2 │ ├───────────────────────────┼────────┼───────────┼──────────┤ │ Linear Regression │ 0.773 │ 5.309e-2 │ 1.813e-1 │ ├───────────────────────────┼────────┼───────────┼──────────┤ │ Ridge Regression │ 0.772 │ 5.320e-2 │ 1.822e-1 │ ├───────────────────────────┼────────┼───────────┼──────────┤ │ Elastic Net │ 0.385 │ 1.437e-1 │ 3.591e-1 │ ├───────────────────────────┼────────┼───────────┼──────────┤ │ LASSO │ 0.000 │ 2.338e-1 │ 4.675e-1 │ ├───────────────────────────┼────────┼───────────┼──────────┤ │ Support Vector Regression │ -0.069 │ 2.500e-1 │ 5.000e-1 │ └───────────────────────────┴────────┴───────────┴──────────┘ Based on this output, you can then select the best model for the task.

Features

Currently this crate only includes AutoML features for regression and classification. - Regression - Decision Tree Regression - KNN Regression - Random Forest Regression - Linear Regression - Rdige Regression - LASSO - Elastic Net - Support Vector Regression - Classification - Random Forest Classification - Support Vector Classification - Logistic Regression - KNN Classification