autodiff
An auto-differentiation library.
Currently supported features:
[x] Forward auto-differentiation
[ ] Reverse auto-differentiation
To compute a derivative with respect to a variable using this library:
create a variable of type F
, which implements the Float
trait from the num-traits
crate.
compute your function using this variable as the input.
request the derivative from this variable using the deriv
method.
This library is a work in progress and is not ready for production use.
The following example differentiates a 1D function defined by a closure.
``rust
// Define a function
f(x) = e^{-0.5*x^2}`.
let f = |x: F1| (-x * x / F1::cst(2.0)).exp();
// Differentiate `f` at zero.
println!("{}", diff(f, 0.0)); // prints `0`
```
To compute the gradient of a function, use the function grad
as follows:
``rust
// Define a function
f(x,y) = x*y^2`.
let f = |x: &[F1]| x[0] * x[1] * x[1];
// Differentiate `f` at `(1,2)`.
let g = grad(f, &vec![1.0, 2.0]);
println!("({}, {})", g[0], g[1]); // prints `(4, 4)`
```
Compute a specific derivative of a multi-variable function:
``rust
// Define a function
f(x,y) = x*y^2`.
let f = |v: &[F1]| v[0] * v[1] * v[1];
// Differentiate `f` at `(1,2)` with respect to `x` (the first unknown) only.
let v = vec![
F1::var(1.0), // Create a variable.
F1::cst(2.0), // Create a constant.
];
println!("{}", f(&v).deriv()); // prints `4`
```
Compute higher order derivatives by nesting the generic parameter of F
. For convenience we provide
type aliases for the first 3 orders:
rust
type F1 = F<f64>;
type F2 = F<F<f64>>;
type F3 = F<F<F<f64>>>;
To compute the third order derivative, we can use the F3
type as follows.
``rust
// Define a function
f(x) = (x - 1)^3`.
let f = |x: F3| (x - 1.0_f64).powi(3);
// Compute the 3rd derivative of `f` at `x = 0`.
println!("{}", f(F3::var(0.0)).deriv().deriv().deriv()); // prints `6`
```
This repository is licensed under either of
at your option.
This library started as a fork of rust-ad.