autodiff

An auto-differentiation library.

On crates.io On docs.rs Build status

Currently supported features:

To compute a derivative with respect to a variable using this library:

  1. create a variable of type F, which implements the Float trait from the num-traits crate.

  2. compute your function using this variable as the input.

  3. request the derivative from this variable using the deriv method.

Disclaimer

This library is a work in progress and is not ready for production use.

Examples

The following example differentiates a 1D function defined by a closure.

``rust // Define a functionf(x) = e^{-0.5*x^2}`. let f = |x: F1| (-x * x / F1::cst(2.0)).exp();

// Differentiate `f` at zero.
println!("{}", diff(f, 0.0)); // prints `0`

```

To compute the gradient of a function, use the function grad as follows:

``rust // Define a functionf(x,y) = x*y^2`. let f = |x: &[F1]| x[0] * x[1] * x[1];

// Differentiate `f` at `(1,2)`.
let g = grad(f, &vec![1.0, 2.0]);
println!("({}, {})", g[0], g[1]); // prints `(4, 4)`

```

Compute a specific derivative of a multi-variable function:

``rust // Define a functionf(x,y) = x*y^2`. let f = |v: &[F1]| v[0] * v[1] * v[1];

 // Differentiate `f` at `(1,2)` with respect to `x` (the first unknown) only.
 let v = vec![
     F1::var(1.0), // Create a variable.
     F1::cst(2.0), // Create a constant.
 ];
 println!("{}", f(&v).deriv()); // prints `4`

```

Compute higher order derivatives by nesting the generic parameter of F. For convenience we provide type aliases for the first 3 orders:

rust type F1 = F<f64>; type F2 = F<F<f64>>; type F3 = F<F<F<f64>>>;

To compute the third order derivative, we can use the F3 type as follows.

``rust // Define a functionf(x) = (x - 1)^3`. let f = |x: F3| (x - 1.0_f64).powi(3);

 // Compute the 3rd derivative of `f` at `x = 0`.
 println!("{}", f(F3::var(0.0)).deriv().deriv().deriv()); // prints `6`

```

License

This repository is licensed under either of

at your option.

Acknowledgements

This library started as a fork of rust-ad.