ark-poly

This crate implements traits and implementations for polynomials, FFT-friendly subsets of a field (dubbed "domains"), and FFTs for these domains.

Polynomials

The polynomial module provides the following traits for defining polynomials in coefficient form:

This crate also provides the following data structures that implement these traits:

This crate also provides the univariate/DenseOrSparsePolynomial enum, which allows the user to abstract over the type of underlying univariate polynomial (dense or sparse).

Example

rust use ark_poly::{ polynomial::multivariate::{SparsePolynomial, SparseTerm, Term}, DenseMVPolynomial, Polynomial, }; use ark_test_curves::bls12_381::Fq; // Create a multivariate polynomial in 3 variables, with 4 terms: // f(x_0, x_1, x_2) = 2*x_0^3 + x_0*x_2 + x_1*x_2 + 5 let poly = SparsePolynomial::from_coefficients_vec( 3, vec![ (Fq::from(2), SparseTerm::new(vec![(0, 3)])), (Fq::from(1), SparseTerm::new(vec![(0, 1), (2, 1)])), (Fq::from(1), SparseTerm::new(vec![(1, 1), (2, 1)])), (Fq::from(5), SparseTerm::new(vec![])), ], ); assert_eq!(poly.evaluate(&vec![Fq::from(2), Fq::from(3), Fq::from(6)]), Fq::from(51));

Evaluations

The evaluations module provides data structures to represent univariate polynomials in lagrange form.

The evaluations module also provides the following traits for defining multivariate polynomials in lagrange form:

This crate provides some data structures to implement these traits.

Example

```rust use arktestcurves::bls12381::Fq; use arkpoly::{DenseMultilinearExtension, MultilinearExtension, SparseMultilinearExtension}; use arkpoly::{ polynomial::multivariate::{SparsePolynomial, SparseTerm, Term}, DenseMVPolynomial, Polynomial, }; use arkstd::One;

// Create a multivariate polynomial in 3 variables: // f(x0, x1, x2) = 2*x0^3 + x0*x2 + x1*x2 let f = SparsePolynomial::fromcoefficientsvec( 3, vec![ (Fq::from(2), SparseTerm::new(vec![(0, 3)])), (Fq::from(1), SparseTerm::new(vec![(0, 1), (2, 1)])), (Fq::from(1), SparseTerm::new(vec![(1, 1), (2, 1)])), (Fq::from(0), SparseTerm::new(vec![])), ], ); // g is the multilinear extension of f, defined by the evaluations of f on the Boolean hypercube: // f(0, 0, 0) = 20^3 + 00 + 00 = 0 // f(1, 0, 0) = 21^3 + 00 + 00 = 2 // ... // f(1, 1, 1) = 21^3 + 11 + 1*1 = 4 let g: DenseMultilinearExtension = DenseMultilinearExtension::fromevaluationsvec( 3, vec![ Fq::from(0), Fq::from(2), Fq::from(0), Fq::from(2), Fq::from(0), Fq::from(3), Fq::from(1), Fq::from(4), ] ); // when evaluated at any point within the Boolean hypercube, f and g should be equal let pointwithinhypercube = &vec![Fq::from(0), Fq::from(1), Fq::from(1)]; asserteq!(f.evaluate(&pointwithinhypercube), g.evaluate(&pointwithin_hypercube).unwrap());

// We can also define a MLE g'(x0, x1, x2) by providing the list of non-zero evaluations: let gprime: SparseMultilinearExtension = SparseMultilinearExtension::fromevaluations( 3, &vec![ (1, Fq::from(2)), (3, Fq::from(2)), (5, Fq::from(3)), (6, Fq::from(1)), (7, Fq::from(4)), ] ); // at any random point (X0, X1, X2), g == g' with negligible probability, unless they are the same function let randompoint = &vec![Fq::from(123), Fq::from(456), Fq::from(789)]; asserteq!(gprime.evaluate(&randompoint).unwrap(), g.evaluate(&randompoint).unwrap());

```

Domains

TODO