Align3D - Iterative Closest Point in Rust

Align3D provides alignment of range images and point clouds using the Iterative Closest Point (ICP) algorithm.

It provides functionalities:

Align3D leverages several Rust libraries to provide its functionality:

Getting it

Add to your project's Cargo.toml:

toml align3d = { git = "https://github.com/otaviog/align3d" }

Sample use

The following code do the following:

```rust use align3d::{ bilateral::BilateralFilter, icp::{multiscale::MultiscaleAlign, MsIcpParams}, io::dataset::{IndoorLidarDataset, RgbdDataset, SubsetDataset}, metrics::TransformMetrics, rangeimage::RangeImageBuilder, trajectorybuilder::TrajectoryBuilder, viz::rgbddatasetviewer::RgbdDatasetViewer, };

fn main() -> Result<(), Box> { // Load the dataset let dataset = Box::new(SubsetDataset::new( Box::new(IndoorLidarDataset::load("tests/data/indoor_lidar/bedroom")?), (0..20).collect(), ));

// RangeImageBuilder composes the processing steps when loading RGB-D frames (or `RangeImage`).
let range_image_transform = RangeImageBuilder::default()
    .with_intensity(true) // Use intensity besides RGB
    .with_normals(true) // Compute the normals
    .with_bilateral_filter(Some(BilateralFilter::default())) // Apply bilateral filter
    .pyramid_levels(3); // Compute 3-level Gaussian pyramid.

// Default ICP parameters
let icp_params = MsIcpParams::default();

// TrajectoryBuilder accumulates the per-frame alignment to form the odometry of the camera poses.
let mut traj_builder = TrajectoryBuilder::default();

// Use the `.build()` method to create a RangeImage pyramid.
let mut prev_frame = range_image_transform.build(dataset.get(0).unwrap());

// Iterate over the dataset
for i in 1..dataset.len() {
    let current_frame = range_image_transform.build(dataset.get(i).unwrap());

    // Perform ICP alignment
    let icp = MultiscaleAlign::new(icp_params.clone(), &prev_frame).unwrap();
    let transform = icp.align(&current_frame);

    // Accumulate transformations for obtaining odometry
    traj_builder.accumulate(&transform, Some(i as f32));
    prev_frame = current_frame;
}

// Compute metrics in relation to the ground truth
// Get the predicted trajectory
let pred_trajectory = traj_builder.build();

// Get the ground truth trajectory
let gt_trajectory = &dataset
    .trajectory()
    .expect("Dataset has no trajectory")
    .first_frame_at_origin();

// Compute the metrics
let metrics = TransformMetrics::mean_trajectory_error(&pred_trajectory, &gt_trajectory)?;
println!("Mean trajectory error: {}", metrics);

// Visualization part
RgbdDatasetViewer::new(dataset)
    .with_trajectory(pred_trajectory.clone())
    .run();

Ok(())

}

```

txt Mean trajectory error: angle: 1.91°, translation: 0.03885

and show a window like this:

(move the camera using WASD controls)

Benchmarking

| Functionality | Input desc. |[min, mean, max] | |---------------|------------------------------------------------|---------------------------------| | image icp | 3-level pyramid of 640x480 inputs | [101.91 ms 103.01 ms 104.29 ms] | | kdtree | 500000 database vs 500000 queries of 3D points | [101.48 ms 101.75 ms 102.04 ms] | | compute_normals | 640x480 RGB-D frame | [1.1587 ms 1.1778 ms 1.2005 ms] |

Contributing

Contributions to Align3D are welcome! If you find any issues or have suggestions for improvements, please create a new issue or submit a pull request.

License

Align3D is licensed under the MIT License.

Release Plan

Align3D is an experimental project that showcases the potential of using Rust for writing computer vision applications. While still being a experimental project, it shows the versatility and performance benefits that Rust offers compared to the traditional combination of C++ and Python commonly used in computer vision and machine learning.

The project has the following Road map: